1904/104 CHEMISTRY TECHNIQUES I June/July 2020 Time: 3 hours



#### THE KENYA NATIONAL EXAMINATIONS COUNCIL

# CRAFT CERTIFICATE IN SCIENCE LABORATORY TECHNOLOGY MODULE I

CHEMISTRY TECHNIQUES I

3 hours

#### INSTRUCTIONS TO CANDIDATES

You should have the following for this examination:

Answer booklet:

Non-programmable scientific calculator.

This paper consists of TWO sections; A and B.

Answer ALL the questions in section A and any TWO questions from section B in the answer booklet provided.

Each question in section A carries 4 marks while each question in section B carries 20 marks. Maximum marks for each part of a question are indicated.

Candidates should answer the questions in English.

This paper consists of 5 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing.

#### SECTION A (60 marks)

### Answer ALL questions in this section.

| 1. St | ate four differences betw | een a physical and a chemical | I change. | 4 marks) |
|-------|---------------------------|-------------------------------|-----------|----------|
|-------|---------------------------|-------------------------------|-----------|----------|

- 2. Name four criteria for determining purity of a substance. (4 marks)
- 3. List four properties of ionic compounds. (4 marks)
- 4. (a) Define the term 'relative atomic mass'. (2 marks)
  - (b) Determine the percentage of carbon in calcium carbonate. (Ca = 40, C = 12, O = 16) (2 marks)
- An organic compound contains 37.5% carbon, 12.5% Hydrogen and the rest is oxygen.
   Determine the empirical formula of the compound.
   (C = 12, H = 1, O = 16)
- 6. Explain why the ionic radius of a non-metallic element is greater than its atomic radius.

  (4 marks)
- 7. Figure 1 shows a chemical structure.

Fig. 1

- (a) Name:
  - (i) the type of bonding in the structure; (1 mark)
  - (ii) the period to which the structure belongs; (1 mark)
  - (iii) the group to which the structure belongs. (1 mark)
- (b) Identify the element represented by the structure. (1 mark)

8. Define each of the following terms:

(a) hydrocarbon;

(2 marks)

(b) isomerism.

(2 marks)

9. Write the IUPAC names of each of the following compounds:

(a) CH<sub>4</sub>

(1 mark)

(b)  $C_2H_4$ 

(1 mark)

(c)  $C_2H_3Cl$ 

(1 mark)

(d)  $C_2H_5OH$ 

(1 mark)

10. State four factors which affect chemical equilibrium.

(4 marks)

11. Name four storage methods of chemical samples in the laboratory.

(4 marks)

12. State four requirements of a primary standard substance.

(4 marks)

13. Determine the mass of anhydrous sodium carbonate required to prepare a 100 cm<sup>3</sup> of 0.1 M solution.

(Na = 23, C = 12, O = 16)

(4 marks)

14. Calculate the pH of a 0.1 M sodium hydroxide solution.

(4 marks)

15. (a) List two properties of acids.

(2 marks)

(b) Distinguish between a strong acid and a weak acid.

(2 marks)

## Answer any TWO questions from this section.

16. Table I shows a section of the periodic table containing four elements U, V, W and X. The letters are not the actual symbols of the elements.

Table I

| 1 |    |  |   |    |   |    |      | 0 |
|---|----|--|---|----|---|----|------|---|
|   | 11 |  | Ш | IV | V | VI | VII  |   |
|   |    |  |   |    |   | V  |      | W |
|   |    |  |   |    |   |    | X    |   |
| U |    |  |   |    |   |    |      |   |
|   |    |  |   |    |   |    |      |   |
|   |    |  |   |    |   |    | -104 |   |

- Identify the letter which represents: (a)
  - (i) a halogen;

(1 mark)

(ii) a noble gas; (1 mark)

(iii) an alkali metal.

(1 mark)

State with a reason the element with the smallest atomic radius. (b)

(3 marks)

(c) Write the formula for the compound formed between:

(i) V and X; (1 mark)

(ii) V and U.

(1 mark)

- (d) An element Z, combines with 0.72 g of magnesium to form 1 g of a white solid. Determine the formula of the white solid. (Mg = 24, Z = 14) (6 marks)
- (e) Balance the following chemical equations:
  - (i)  $Al(OH)_3 + HNO_3 \longrightarrow Al(NO_3)_3 + H_2O$ (s) (aq) (aq) (l)

(2 marks)

(ii)  $Al_2O_3 + HNO_3 \longrightarrow Al (NO_3)_3 + H_2O$ (aq) (aq)

(2 marks)

 $Ca(HCO_3)_2 + Ca(OH)_2 \longrightarrow CaCO_3 + H_2O$ 

(2 marks)

- (iii)
  - (s)
- (aq)
- (s)  $(\ell)$

| 17. | A m | ass of 0.5 g of impure copper (II) oxide reacted with $50 \text{ cm}^3$ of 0.1 M nitric . (Cu = 64, O = 16, N = 14, H = 1) |                     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------|---------------------|
|     | (a) | Name the type of reaction that took place. Give a reason.                                                                  | (2 marks            |
|     | (b) | Write a balanced chemical equation for the reaction.                                                                       | (2 marks            |
|     | (c) | Calculate the number of moles of nitric acid that reacted.                                                                 | (4 marks            |
|     | (d) | Calculate the number of moles of copper (II) oxide in the impure sample.                                                   | (2 marks)           |
|     | (e) | Determine the mass of copper (II) oxide in the sample.                                                                     | (3 marks)           |
|     | (f) | Determine the percentage of copper (II) oxide in the sample.                                                               | (2 marks)           |
|     | (g) | Calculate the mass of copper present in the sample.                                                                        | (5 marks)           |
| 18. | (a) | State the Le - Chateliers principle.                                                                                       | (2 marks)           |
|     | (b) | Ammonia is manufactured according to the following equation:                                                               |                     |
|     |     | $N_2 + 3H_2 \iff 2NH_3  \Delta H = -92KJMol^{-1}$ (g) (g) (g)                                                              |                     |
|     |     | Explain what happens to the yield of ammonia when:                                                                         |                     |
|     |     | (i) more hydrogen gas is introduced into the system;                                                                       | (3 marks)           |
|     |     | (ii) pressure of the system is reduced;                                                                                    | (3 marks)           |
|     |     | (iii) temperature is increased;                                                                                            | (3 marks)           |
|     |     | (iv) a catalyst is used.                                                                                                   | (3 marks)           |
|     | (c) | Draw the structure of each of the following organic compounds:                                                             |                     |
|     |     | (i) butan-1-ol;                                                                                                            | (2 marks)           |
|     |     | (ii) pentanol;                                                                                                             | (2 marks)           |
|     |     | (iii) chloroethane.                                                                                                        | (2 marks)           |
| 19. | (a) | Determine the amount of pure sodium chloride required to prepare 250 ml, 1 solution of sodium ions. (Na = 23, Cl = 35.5)   | 00 ppm<br>(8 marks) |
|     | (b) | Describe the laboratory preparation of the solution in (a).                                                                | (8 marks)           |
|     | (c) | Distinguish between a working solution and a stock solution.                                                               | (4 marks)           |